
AAF Codecs
Null codec implementation and (re)use.

AAF Engineering Committee Meeting,
Atlanta, Georgia,
October 7, 2002

Jim Trainor, AAF Association

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 2

Extending AAF - Overview

• From the “AAF SDK Developers’ Guide V1.0”,
extensions include:
– Add new properties to built-in classes.
– Define new classes.
– Define new kinds of effects operations.
– Define new kinds of audio or video compression.
– Define new kinds of essence.
– Define new container mechanisms to store essence

data.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 3

Extending AAF - Overview

• Add new properties to built-in classes:
– Objects are simply a set of properties.
– A property is a value with a defined name and type.

Example:

Fri Nov 2 14:47:35 2001TimeStampLastModified

ValueProperty TypeProperty Name

– Easy to create, read, write, modify. Only real issue is
documentation so other users know about your new
property.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 4

Extending AAF - Overview

• Define new classes:
– Add a new ClassDefinition to the dictionary.
– A ClassDefinition object defines the class’

property set, and parent class.
– Any application that discovers this new class

should be able to read/write/modify the values
and understand inheritance relationships.

– Only real issue is documentation.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 5

Extending AAF - Overview

• Define new kinds of effects operations:
– Add an OperationDefinition object to the dictionary.
– This describes the operations.

• A category (a unique identifier, e.g.
kAAFEffectMonoAudioDissolve).

• Number of inputs, outputs, etc.

– Plugins can be described, or identified, to perform all
or some of the effects processing.

• e.g. Interpolations plugins can be created to compute
parameter values given key samples.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 6

Extending AAF - Overview

• Define new kinds of effects operations,
continued:
– Plugins may or may not be required to

process effects.
– The SDK does not locate, load, or execute

effect plugins.
– Enough information is provided by the

OperationDefinition for an application to
locate, load, and execute any code that may
be required to process the effect.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 7

Extending AAF - Overview

• Define new kinds audio or video
compression, and new kinds of essence:
– A new audio or video compression format.
– A new data type, e.g. motion capture data

used to drive 3D animation.
– GPS data (Global Positioning System), to

accompany a video stream.
– Auxiliary data feeds extracted from a video

signal.
– Next hot thing, etc, etc, etc

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 8

Extending AAF - Overview

• Define new kinds audio or video compression,
and new kinds of essence, continued:
– The AAF SKD (i.e. the COM library) does not directly

support any form of essence IO.
– Essence codecs are required for all essence IO

operations.
– The AAF SDK does automate the process of locating,

loading, and executing, essence codecs.
– The null codec is an essence codec.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 9

Extending AAF - Overview

• Define new container mechanisms to store
essence data.
– Essence data processing is distinct from

storage device IO.
– Storage IO is implemented by separate

interfaces that must also be provided by
plugins.

– These are simple read/write/seek interfaces.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 10

Application View of Codecs

• An AAF application must select a codec
when creating new essence material.

• New essence in an AAF file is normally
created using the
IAAFMasterMob::CreateEssence()
function.

• Codecs are identified by a unique
identifier.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 11

IAAFEssenceAccess* essenceAccess;
masterMob->CreateEssence(1, // Slot ID

soundDef, // MediaKind
This ID selects the codec kAAFCodecWAVE, // codecID

editRate,
sampleRate,
kAAFCompressionDisable,
NULL, // Essence locator
ContainerAAF,
&essenceAccess);

// Now use the essenceAccess interface to write essence data.

Application View of Codecs

• A code fragment might look like this:

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 12

Application View of Codecs

• The AAF SDK has four sample codecs:
– Wave audio
– AIFC audio
– JPEG compressed video
– CDCI uncompressed video

• A sample MPEG codec is also available
(thanks to the BBC), but not currently part
of the SDK.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 13

Application View of Codecs

• Example programs that read/write
essence using codecs:
– AAF/example/com-api/ImportAudioExample.cpp
– AAF/example/com-api/ExportAudioExample.cpp
– AAF/examples/axExample/axEssenceCreate.cpp

• See the Washington Tutorial “Essence Create”
presentation and associated sample code.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 14

Application View of Codecs

• CreateEssence() creates quite a bit of
“scaffolding” in the AAF file.

• Among the objects created and added to
the file, CreateEssence() adds a
CodecDefinition object to the Dictionary.

• When the essence is opened for reading,
this CodecDefinition is consulted to
determine the codec id.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 15

Application View of Codecs

• The application’s responsibilities include:
– Loading the codec using IAAFPluginManager.
– Determining the codec’s uuid for use in the

CreateEssence() call.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 16

Application View of Codecs

• IAAFPluginManager interface:
– RegisterSharedPlugins() currently is hard

coded to load the sample plugin libraries:
• AAFPGAPI.dll (or .so)
• AAFINTP.dll (or .so)

– RegisterPluginFile() to load a single library.
– RegisterPluginDirectory() to load all libraries

in a directory.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 17

Plugin Library Structure

• Plugins are dynamically loadable libraries.
• These libraries have:

– Platform dependent entry points that are used
to initialize, and otherwise query or control the
library.

• Windows: DllMain, etc
• MacOS: DllInitializationRoutine, etc
• Unix: ???, (static globals are constructed)

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 18

Plugin Library Structure

– Entry points defined by the AAF SDK:
• AAFGetClassCount
• AAFGetClassObjectId
• DllGetClassObject
• DllCanUnloadNow

– Look in ImplAAFPluginFile.cpp to see the
code that checks for the presence of these
symbols.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 19

Plugin Library Structure

• Note, the following two functions are also
standard Windows library entry points:

• DllGetClassObject
• DllCanUnloadNow

• They are also used by the SDK hence are
required on all platforms.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 20

Plugin Library Structure

• The following functions are used by the
SDK to iterate over the list of class ids
supported by the plugin:

ULONG AAFGetClassCount()

• Returns the number of COM objects implemented
in the library.

ULONG AAFGetClassObjectID(ULONG index, CLSID *pClassID)

• Returns the i’th class id.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 21

Plugin Library Structure

HRESULT DllGetClassObject(CLSID& clsid, IID& riid, void** ppv)

• Acts as a factory interface for the library.
• It creates an instance of the class identified by “clsid”,

and uses “ppv” to return a pointer to the COM interface
identified by “riid”.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 22

Plugin Library Structure
ULONG DllCanUnloadNow()

• Returns true if it is safe to unload the library.
• How does it know?

– If any COM objects created by DllGetClassObject() have non
zero reference counts, then it is not safe to unload the library -
there are pointers floating around to the library’s code.

– It is even easier: increment an instance count in all your library’s
COM object constructors, decrement the instance count in the
destructor. If the count is zero, it is safe to unload.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 23

Plugin COM Interfaces
• IClassFactory

– DllGetClassObject does not create the COM plugin interface
directly.

– It creates an IClassFactory object that in turn is responsible
for creating the underlying COM object.

+CreateInstance(in pUnkOuter : IUnknown*, in iid : IID&, in ppv : void**) : HRESULT
+LockServer(in lock : bool) : HRESULT

«interface»
IClassFactory

+QueryInterface(in iid : IID&, in ppv : void**) : HRESULT
+AddRef() : unsigned long
+Release() : unsigned long

«interface»
IUnknown

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 24

Plugin COM Interfaces

• The IClassFactory implementation creates
an object that must implement:
– IAAFPlugin

• And at least one of the other COM
interfaces defined in AAFPlugin.h:

IAAFClassExtension
IAAFEssenceStream
IAAFEssenceDataStream

IAAFEssenceCodec
IAAFMultiEssenceCodec
IAAFEssenceContainer
IAAFInterpolator

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 25

Plugin COM Interfaces

• The null codec currently implements:
– IAAFPlugin
– IAAFEssenceCodec

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 26

COM Object Creation Sequence
1. The SDK loads the library and calls

AAFGetClassCount()
2. For index = 0 to count, the SDK calls

AAFGetClassObjectID()
3. For each class id the SDK calls: DllGetClassObject(),

which returns an object that implements IClassFactory.
4. The SDK calls IClassFactory::CreateInstance() to

create the underlying COM object.
5. The SDK makes repeated calls to QueryInterface() to

determine what plugin interfaces the object supports.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 27

COM Object Aggregation

• An important detail to be aware is the
requirement to support COM object
aggregation.

• Note the first argument of the
IClassFactory CreateInstance method:

CreateInstance(IUnknown* pUnkOuter, IID& iid, void** ppv)

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 28

COM Object Aggregation

• If pUnkOuter is not null, then the COM
object (e.g. the IAAFEssenceCodec
implementation) is being aggregated by
the object calling the CreateInstance()
method.

• This is an important detail!
• The plugin’s IUnknown implementation

must be “aggregation aware”.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 29

COM Object Aggregation

• The null codec implementation supports
aggregation using the technique described
in:

Inside COM, Dale Rogerson, Microsoft Press

• Note, this is different than the technique
use by the original sample codecs
supplied with the SDK.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 30

Null Codec Basic Requirements
• Code that is easy to understand.
• Stand alone. No dependencies, other than on

header files, on existing SDK code.
• Support multiple codecs in a single library.
• Easy to reuse:

– Few, if any, modifications required to “bring up” a new
plugin library.

– Add code, don’t modify code.
– Reusable IClassFactory and IUnkown

implementations with support for aggregation.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 31

Null Codec Design
• A registry object to store a set of factory objects

that will create the IClassFactory COM objects.
– This registry is initialized at library init time.
– Only one registry per library is required – use a

singleton.
• IClassFactory implementation based on that

found in the “Inside COM” book. This
implementation supports aggregation.
– The sample code in “Inside COM” varies only by the

type of the underlying COM object – this can be
cleanly implemented using a template.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 32

Null Codec Design

• Shared IUnknown implementation based
on that found in “Inside COM” (support
aggregation.)

• DllCanUnloaded() now be implemented
using class instance counters
implemented using shared base class
static counters.
– Easy to support, all the COM objects will

already share an IUnknown implementation.

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 33

Null Codec UML

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 34

Null Codec Reuse

• Declare a new class to implement your
COM object:

#include "CAxUnknown.h"

class CMyCodec
: public IAAFEssenceCodec,

public IAAFPlugin,
public CAxUnknown

{
public:

CAXUNKNOWN_DECLARE_IUNKNOWN_METHODS

// Override CAxUnknown::NondelegatingQueryInterface() in order to added
// support for the interfaces supported by this class.
STDMETHOD(NondelegatingQueryInterface(const IID& iid, void** ppv));

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 35

Null Codec Reuse
• Initialize CAxUnknown in your constructor:

CMyCodec::CMyCodec(IUnknown* pUnkOuter)
: CAxUnknown(pUnkOuter)

{
}

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 36

Null Codec Reuse

• Add your “NondelegatingQueryInterface”
implementation:

HRESULT CMyCodec::NondelegatingQueryInterface(const IID& iid, void** ppv)
{

if (IID_IAAFPlugin == iid) {
ppv = static_cast<IAAFPlugin>(this);
AddRef();
return S_OK;

}
// Add tests for other IIDs you support.
else {

// If you don’t support it, delegate to CAxUnkown
return CAxUnknown::NondelegatingQueryInterface(iid, ppv);

}
}

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 37

Null Codec Reuse
• Register you new class:

// Simple class with constructor that creates a new AxPluginFctry<> and registers it under
// you class id.
class MyRegistration {

MyRegistration
{

std::auto_ptr<AxPluginFctryPrtcl>
myCodecFctry(new AxPluginFctry<CMyCodec>(

CLSID_CAxNullEssenceCodec));

AxPluginRegistry::GetInstance().RegisterFactory(myCodecFctry);
}

}

// Declare a static global – its constructor will register you COM class when the library is
// loaded.
MyRegistration myRegistration;

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 38

Null Codec Reuse

• It is not necessary to modify any of the null
codec code to reuse it.

• Just follow the recipe to create a new .h
and .cpp file for your new COM object, and
compile.

• But wait…. This is just the beginning, the
actual implementation of the COM object
still must be added!

AAF Engineering Committee Meeting, Atlanta, Georgia, October 7, 2002 39

