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Extending AAF - Overview

• From the “AAF SDK Developers’ Guide V1.0”, 
extensions include:
– Add new properties to built-in classes.
– Define new classes. 
– Define new kinds of effects operations.
– Define new kinds of audio or video compression.
– Define new kinds of essence.
– Define new container mechanisms to store essence 

data.
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Extending AAF - Overview

• Add new properties to built-in classes:
– Objects are simply a set of properties.
– A property is a value with a defined name and type.  

Example:

Fri Nov  2 14:47:35  2001TimeStampLastModified

ValueProperty TypeProperty Name

– Easy to create, read, write, modify.  Only real issue is 
documentation so other users know about your new 
property.
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Extending AAF - Overview

• Define new classes:
– Add a new ClassDefinition to the dictionary.
– A ClassDefinition object defines the class’

property set, and parent class.
– Any application that discovers this new class 

should be able to read/write/modify the values 
and understand inheritance relationships.

– Only real issue is documentation.
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Extending AAF - Overview

• Define new kinds of effects operations:
– Add an OperationDefinition object to the dictionary.
– This describes the operations.

• A category (a unique identifier, e.g. 
kAAFEffectMonoAudioDissolve).

• Number of inputs, outputs, etc.

– Plugins can be described, or identified, to perform all 
or some of the effects processing.

• e.g. Interpolations plugins can be created to compute 
parameter values given key samples. 
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Extending AAF - Overview

• Define new kinds of effects operations, 
continued:
– Plugins may or may not be required to 

process effects.
– The SDK does not locate, load, or execute 

effect plugins.
– Enough information is provided by the 

OperationDefinition for an application to 
locate, load, and execute any code that may 
be required to process the effect.
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Extending AAF - Overview

• Define new kinds audio or video 
compression, and new kinds of essence:
– A new audio or video compression format.
– A new data type, e.g. motion capture data 

used to drive 3D animation.
– GPS data (Global Positioning System), to 

accompany a video stream.
– Auxiliary data feeds extracted from a video 

signal.
– Next hot thing, etc, etc, etc
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Extending AAF - Overview

• Define new kinds audio or video compression, 
and new kinds of essence, continued:
– The AAF SKD (i.e. the COM library) does not directly 

support any form of essence IO.
– Essence codecs are required for all essence IO 

operations.
– The AAF SDK does automate the process of locating, 

loading, and executing, essence codecs.
– The null codec is an essence codec.
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Extending AAF - Overview

• Define new container mechanisms to store 
essence data.
– Essence data processing is distinct from 

storage device IO.
– Storage IO is implemented by separate 

interfaces that must also be provided by 
plugins.

– These are simple read/write/seek interfaces.
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Application View of Codecs

• An AAF application must select a codec 
when creating new essence material.

• New essence in an AAF file is normally 
created using the 
IAAFMasterMob::CreateEssence() 
function.

• Codecs are identified by a unique 
identifier.
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IAAFEssenceAccess* essenceAccess;
masterMob->CreateEssence(1, // Slot ID

soundDef, // MediaKind
This ID selects the codec kAAFCodecWAVE,  // codecID

editRate,
sampleRate,
kAAFCompressionDisable,
NULL,                        // Essence locator
ContainerAAF,
&essenceAccess );

// Now use the essenceAccess interface to write essence data.

Application View of Codecs

• A code fragment might look like this:
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Application View of Codecs

• The AAF SDK has four sample codecs:
– Wave audio
– AIFC audio
– JPEG compressed video
– CDCI uncompressed video

• A sample MPEG codec is also available 
(thanks to the BBC), but not currently part 
of the SDK.
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Application View of Codecs

• Example programs that read/write 
essence using codecs:
– AAF/example/com-api/ImportAudioExample.cpp
– AAF/example/com-api/ExportAudioExample.cpp
– AAF/examples/axExample/axEssenceCreate.cpp

• See the Washington Tutorial “Essence Create”
presentation and associated sample code.
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Application View of Codecs

• CreateEssence() creates quite a bit of 
“scaffolding” in the AAF file.

• Among the objects created and added to 
the file, CreateEssence() adds a 
CodecDefinition object to the Dictionary.

• When the essence is opened for reading, 
this CodecDefinition is consulted to 
determine the codec id.
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Application View of Codecs

• The application’s responsibilities include:
– Loading the codec using IAAFPluginManager.
– Determining the codec’s uuid for use in the 

CreateEssence() call.
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Application View of Codecs

• IAAFPluginManager interface:
– RegisterSharedPlugins() currently is hard 

coded to load the sample plugin libraries:
• AAFPGAPI.dll  (or .so)
• AAFINTP.dll  (or .so)

– RegisterPluginFile() to load a single library.
– RegisterPluginDirectory() to load all libraries 

in a directory.
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Plugin Library Structure

• Plugins are dynamically loadable libraries.
• These libraries have:

– Platform dependent entry points that are used 
to initialize, and otherwise query or control the 
library.

• Windows: DllMain, etc
• MacOS: DllInitializationRoutine,  etc
• Unix: ???,  (static globals are constructed)
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Plugin Library Structure

– Entry points defined by the AAF SDK:
• AAFGetClassCount
• AAFGetClassObjectId
• DllGetClassObject
• DllCanUnloadNow

– Look in ImplAAFPluginFile.cpp to see the 
code that checks for the presence of these 
symbols.
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Plugin Library Structure

• Note, the following two functions are also 
standard Windows library entry points:

• DllGetClassObject
• DllCanUnloadNow

• They are also used by the SDK hence are 
required on all platforms.
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Plugin Library Structure

• The following functions are used by the 
SDK to iterate over the list of class ids 
supported by the plugin:

ULONG AAFGetClassCount()

• Returns the number of COM objects implemented 
in the library.

ULONG AAFGetClassObjectID(ULONG index, CLSID *pClassID)

• Returns the i’th class id.
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Plugin Library Structure

HRESULT DllGetClassObject(CLSID& clsid, IID& riid, void** ppv)

• Acts as a factory interface for the library.
• It creates an instance of the class identified by “clsid”, 

and uses “ppv” to return a pointer to the COM interface 
identified by “riid”.
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Plugin Library Structure
ULONG DllCanUnloadNow()

• Returns true if it is safe to unload the library.
• How does it know?

– If any COM objects created by DllGetClassObject() have non 
zero reference counts, then it is not safe to unload the library -
there are pointers floating around to the library’s code.

– It is even easier:  increment an instance count in all your library’s 
COM object constructors, decrement the instance count in the 
destructor.  If the count is zero, it is safe to unload. 
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Plugin COM Interfaces
• IClassFactory

– DllGetClassObject does not create the COM plugin interface 
directly.

– It creates an IClassFactory object that in turn is responsible 
for creating the underlying COM object.

+CreateInstance(in pUnkOuter : IUnknown*, in iid : IID&, in ppv : void**) : HRESULT
+LockServer(in lock : bool) : HRESULT

«interface»
IClassFactory

+QueryInterface(in iid : IID&, in ppv : void**) : HRESULT
+AddRef() : unsigned long
+Release() : unsigned long

«interface»
IUnknown
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Plugin COM Interfaces

• The IClassFactory implementation creates 
an object that must implement:
– IAAFPlugin

• And at least one of the other COM 
interfaces defined in AAFPlugin.h:

IAAFClassExtension
IAAFEssenceStream
IAAFEssenceDataStream

IAAFEssenceCodec
IAAFMultiEssenceCodec
IAAFEssenceContainer
IAAFInterpolator
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Plugin COM Interfaces

• The null codec currently implements:
– IAAFPlugin
– IAAFEssenceCodec
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COM Object Creation Sequence
1. The SDK loads the library and calls 

AAFGetClassCount()
2. For index = 0 to count, the SDK calls 

AAFGetClassObjectID()
3. For each class id the SDK calls: DllGetClassObject(), 

which returns an object that implements IClassFactory.
4. The SDK calls IClassFactory::CreateInstance() to 

create the underlying COM object.
5. The SDK makes repeated calls to QueryInterface() to 

determine what plugin interfaces the object supports.
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COM Object Aggregation

• An important detail to be aware is the 
requirement to support COM object 
aggregation.

• Note the first argument of the 
IClassFactory CreateInstance method:

CreateInstance( IUnknown* pUnkOuter, IID& iid, void** ppv )
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COM Object Aggregation

• If pUnkOuter is not null, then the COM 
object (e.g. the IAAFEssenceCodec 
implementation) is being aggregated by 
the object calling the CreateInstance() 
method.

• This is an important detail!
• The plugin’s IUnknown implementation 

must be “aggregation aware”.
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COM Object Aggregation

• The null codec implementation supports 
aggregation using the technique described 
in:

Inside COM, Dale Rogerson, Microsoft Press

• Note, this is different than the technique 
use by the original sample codecs 
supplied with the SDK.
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Null Codec Basic Requirements
• Code that is easy to understand.
• Stand alone.  No dependencies, other than on 

header files, on existing SDK code.
• Support multiple codecs in a single library.
• Easy to reuse:

– Few, if any, modifications required to “bring up” a new 
plugin library.

– Add code, don’t modify code.
– Reusable IClassFactory and IUnkown 

implementations with support for aggregation.
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Null Codec Design
• A registry object to store a set of factory objects 

that will create the IClassFactory COM objects.
– This registry is initialized at library init time.
– Only one registry per library is required – use a 

singleton.
• IClassFactory implementation based on that 

found in the “Inside COM” book.  This 
implementation supports aggregation.
– The sample code in “Inside COM” varies only by the 

type of the underlying COM object – this can be 
cleanly implemented using a template.
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Null Codec Design

• Shared IUnknown implementation based 
on that found in “Inside COM” (support 
aggregation.)

• DllCanUnloaded() now be implemented 
using class instance counters 
implemented using shared base class 
static counters.
– Easy to support, all the COM objects will 

already share an IUnknown implementation. 
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Null Codec UML
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Null Codec Reuse

• Declare a new class to implement your 
COM object:

#include "CAxUnknown.h"

class CMyCodec
: public IAAFEssenceCodec,

public IAAFPlugin,
public CAxUnknown

{
public:

CAXUNKNOWN_DECLARE_IUNKNOWN_METHODS

// Override CAxUnknown::NondelegatingQueryInterface() in order to added
// support for the interfaces supported by this class.
STDMETHOD( NondelegatingQueryInterface(const IID& iid, void** ppv) );
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Null Codec Reuse
• Initialize CAxUnknown in your constructor:

CMyCodec::CMyCodec( IUnknown* pUnkOuter )
:  CAxUnknown( pUnkOuter )

{
}



AAF Engineering Committee Meeting, Atlanta, Georgia,  October 7, 2002 36

Null Codec Reuse

• Add your “NondelegatingQueryInterface”
implementation:

HRESULT CMyCodec::NondelegatingQueryInterface(const IID& iid, void** ppv)
{

if ( IID_IAAFPlugin == iid ) {
*ppv = static_cast<IAAFPlugin*>(this);
AddRef();
return S_OK;

}
// Add tests for other IIDs you support.
else {

// If you don’t support it, delegate to CAxUnkown
return CAxUnknown::NondelegatingQueryInterface( iid, ppv );

}
}
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Null Codec Reuse
• Register you new class:

// Simple class with constructor that creates a new AxPluginFctry<> and registers it under
// you class id.
class MyRegistration {

MyRegistration 
{

std::auto_ptr<AxPluginFctryPrtcl>
myCodecFctry( new AxPluginFctry<CMyCodec>(            

CLSID_CAxNullEssenceCodec ) );

AxPluginRegistry::GetInstance().RegisterFactory( myCodecFctry );
}

}

// Declare a static global – its constructor will register you COM class when the library is
// loaded.
MyRegistration myRegistration;
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Null Codec Reuse

• It is not necessary to modify any of the null 
codec code to reuse it.

• Just follow the recipe to create a new .h 
and .cpp file for your new COM object, and 
compile.

• But wait…. This is just the beginning, the 
actual implementation of the COM object 
still must be added!
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