
Performance evaluation for AAF Structured Storage files

Results collated by Phil Tudor, 5 April 2005, version 0.1

Introduction

This document presents the results of several pieces of work to evaluate the performance for reading & writing AAF Structured Storage files.

The results given here are:
Real-world AAF file writing speeds reported by end users
AAF SDK ScaleTest results
Evaluating use of OMCreateRawStorageCached

Real-world AAF file writing speeds reported by end users

Measurements by BBC, CNN, Fox

These results were obtained from operational systems and editing applications, with real-world projects.

Programme Software Hardware Number

of edits
Programme
Duration

Number
of tracks

Export
settings

Export
time

BBC
Little Angels
Prog 2
Behavioural
Edit

Avid
Adrenaline
v1.3.5

HP W8000
crate
2x1.7Ghz
Xeon

58 30’ 1
Picture,
2 Sound

Include
all
tracks,
Link to
current
media

“Almost
instant”

Teen Angels
Prog 1

as above as above 805 56’ 30” 2
Picture,
8 Sound

as
above

“30s at
most”

BBC Sport
Long Edit
(with some
Sapphire
effects)

Avid
Adrenaline
v1.6.
Windows
XP SP1.

Xeon
3.06Ghz
processor
and 2GB of
RAM

 25’ 50” 1
Picture,
8 Sound

 2s

Med Edit
(multiple
video
effects)

as above as above 5’ 34” 5
Picture,
8 Sound

 4s

Short Edit
(multiple
video

as above as above 2’ 55” 4
Picture,
4 Sound

 3s

effects)
BBC
? Quantel

QeditPro
 “take

very
little
time to
make”

CNN Post
“So, after several attempts the CNN Post group could not make a Avid MediaComposer and
FinalCutPro work together. The FCP kept crashing. They did get it to work with
http://www.dharmafilm.com/sebskytools/ They said it was a reasonably complex file and there were
no performance issues (that is when it worked)”
Crawford Communications
Input coming…
Fox
Trailer Avid

Adrenaline
 128 (64

clips)
24’ 30” 2

Picture,
8 Sound

 2.75s

Hells
Kitchen
Presentation

as above 644
(199
clips)

1’ 50” 2
Picture,
7 Sound

 6.5s

http://www.dharmafilm.com/sebskytools/

AAF SDK ScaleTest results

Measurements by Stuart Cunningham, BBC

These results were obtained using the AAF SDK’s ScaleTest, which creates AAF files of arbitrary size. Very large numbers of objects were
tested, up to 40000 Mobs in a file.

See next page for results. (Double-click to see whole worksheet)

Test platform was Linux using Schemasoft Structured Storage
Hardware was 2GHz Athlon with 1GB RAM

Observations:

• The performance of the AAF SDK with the SchemaSoft implementation has improved markedly since Dec 2003 [when BBC last
performed these measurements]. A factor of 30 times speed improvement was observed for non-trivial files.

• In terms of scalability of the current SDK, a file containing 40,000 Mobs was created in 1min 50secs on a machine with a 2GHz Athlon
CPU.

• A file containing 10,000 Mobs (the design goal for complexity for the AAF SDK) can be written in 24secs on a machine with a 2GHz
Athlon CPU.

• Writing a 4k sector file is between 2 to 4 times faster than writing the equivalent 512 byte sector file. There was no tangible difference
between 4k and 512 reading times.

Num sourc Num Mobs 4k write 512 write 4k read 512 read
1 4 1.85 2.32 0.22 0.23
2 8 0.19 0.19 0.17 0.18
3 12 0.2 0.2 0.2 0.18
4 16 0.24 0.31 0.21 0.19
6 24 0.23 0.27 0.25 0.23

10 40 0.26 0.32 0.29 0.29
16 64 0.32 0.33 0.4 0.4
25 100 0.4 0.4 0.56 0.54
40 160 0.62 0.6 0.75 0.73
63 252 0.77 0.76 1.08 1.08

100 400 1.1 1.09 1.65 1.61
160 640 1.65 1.67 2.51 2.49
250 1000 2.58 2.64 3.88 3.73
400 1600 3.96 4.05 6.12 6
630 2520 6.14 6.52 9.45 9.36

1000 4000 10.05 10.89 15.22 14.78
1600 6400 15.24 18.3 23.79 23.15
2500 10000 24.15 32.41 37.96 36.6
4000 16000 39.52 63.72 58.1 58.49
6300 25200 64.83 141.78 94.08 90.42

10000 40000 110.69 317.25 149.27 145.05
16000 64000 207.34 752.78 4889.49 3325.7

Num sourc Num Mobs 4k write ess512 write e 4k read ess512 read ess
1 4 0.18 0.96 0.81 0.95
2 8 0.19 0.2 0.26 0.34
3 12 0.2 0.21 0.25 0.53
4 16 0.22 0.24 0.28 0.7
6 24 0.24 0.25 0.33 0.48

10 40 0.29 0.31 0.42 1.95
16 64 0.36 0.39 0.62 1.48
25 100 0.47 0.53 0.82 1.55
40 160 0.66 0.83 1.19 2.62
63 252 0.96 1.38 1.78 3.71

100 400 1.44 1.69 2.99 4.69
160 640 2.44 2.56 4.44 7.47
250 1000 3.52 4.22 5.88 11.31
400 1600 5.95 7.44 11.96 20.08
630 2520 10.18 12.12 16.36 26.76

1000 4000 23.99 22.67 24.91 43.81
1600 6400 40.88 45.95 42.91 73.96
2500 10000 81.69 97.05 62.81 86.27
4000 16000 177.8 199.66 104.27 125.79
6300 25200 392.46 458.67 172.55 216.72

10000 40000 920.05 1157.65 343.94 401.54
16000 64000 FAILED FAILED N/A N/A

Write/Read performance without essence

0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000

Number of Mobs

El
ap

se
d

tim
e

(s
ec

)

4k write
512 write
4k read
512 read

Write/Read performance with essence

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000

Number of Mobs

El
ap

se
d

tim
e

(s
ec

)

4k write
512 write
4k read
512 read

Evaluating use of OMCreateRawStorageCached

Measurements by Jim Trainor, DiskStream

OMCreateRawStorageCached is an optional caching feature which is built into the AAF SDK. These tests evaluated how effective it was.

Results:
[from jim@diskstream.com] 7 March 2005
 BTW recall that Tim warned that this does not show any improvement
over Microsoft's native Windows SS implementation (I expect that it
might even slow it down a bit).

 [from jim@diskstream.com] 14 March 2005
 In followup to the OM cache discussion at the engineering meeting:

 I ran the ScaleTests, using 4000 frames, on Windows and Linux. In the windows case the test was run using both remote and locale storage.

 In all cases the performance was lower when I activated the OM Cache. eli2aaf (the write test) ran vastly slower in some cases - up to two
times slower. InfoDumper (the read test) was only a bit slower.

 This tells me that the Schemasoft's structured storage implementation is already doing a good job caching IO requests. Either that, or I'm doing
something wrong, but I don't think I am. The improvements Tim B. has reported must have been for truly horrible SS implementations (e.g.
Microsoft's Mac impl).

mailto:jim@diskstream.com
mailto:jim@diskstream.com

